Physics
There are different approaches to flight. If an object has a lower density than air, then it is buoyant and is able to float in the air without expending energy. A heavier than air craft, known as an aerodyne, includes flighted animals and insects, fixed-wing aircraft and rotorcraft. Because the craft is heavier than air, it must generate lift to overcome its weight. The wind resistance caused by the craft moving through the air is called drag and is overcome by propulsive thrust except in the case of gliding.
Some vehicles also use thrust for flight, for example rockets and Harrier Jump Jets.
Finally, momentum dominates the flight of ballistic flying objects.
Forcesedit
Forces relevant to flight are
- Propulsive thrust (except in gliders)
- Lift, created by the reaction to an airflow
- Drag, created by aerodynamic friction
- Weight, created by gravity
- Buoyancy, for lighter than air flight
These forces must be balanced for stable flight to occur.
Thrustedit
A fixed-wing aircraft generates forward thrust when air is pushed in the direction opposite to flight. This can be done in several ways including by the spinning blades of a propeller, or a rotating fan pushing air out from the back of a jet engine, or by ejecting hot gases from a rocket engine. The forward thrust is proportional to the mass of the airstream multiplied by the difference in velocity of the airstream. Reverse thrust can be generated to aid braking after landing by reversing the pitch of variable-pitch propeller blades, or using a thrust reverser on a jet engine. Rotary wing aircraft and thrust vectoring V/STOL aircraft use engine thrust to support the weight of the aircraft, and vector sum of this thrust fore and aft to control forward speed.
Liftedit
In the context of an air flow relative to a flying body, the lift force is the component of the aerodynamic force that is perpendicular to the flow direction. Aerodynamic lift results when the wing causes the surrounding air to be deflected - the air then causes a force on the wing in the opposite direction, in accordance with Newton's third law of motion.
Lift is commonly associated with the wing of an aircraft, although lift is also generated by rotors on rotorcraft (which are effectively rotating wings, performing the same function without requiring that the aircraft move forward through the air). While common meanings of the word "lift" suggest that lift opposes gravity, aerodynamic lift can be in any direction. When an aircraft is cruising for example, lift does oppose gravity, but lift occurs at an angle when climbing, descending or banking. On high-speed cars, the lift force is directed downwards (called "down-force") to keep the car stable on the road.
Dragedit
For a solid object moving through a fluid, the drag is the component of the net aerodynamic or hydrodynamic force acting opposite to the direction of the movement. Therefore, drag opposes the motion of the object, and in a powered vehicle it must be overcome by thrust. The process which creates lift also causes some drag.
Lift-to-drag ratioedit
Aerodynamic lift is created by the motion of an aerodynamic object (wing) through the air, which due to its shape and angle deflects the air. For sustained straight and level flight, lift must be equal and opposite to weight. In general, long narrow wings are able deflect a large amount of air at a slow speed, whereas smaller wings need a higher forward speed to deflect an equivalent amount of air and thus generate an equivalent amount of lift. Large cargo aircraft tend to use longer wings with higher angles of attack, whereas supersonic aircraft tend to have short wings and rely heavily on high forward speed to generate lift.
However, this lift (deflection) process inevitably causes a retarding force called drag. Because lift and drag are both aerodynamic forces, the ratio of lift to drag is an indication of the aerodynamic efficiency of the airplane. The lift to drag ratio is the L/D ratio, pronounced "L over D ratio." An airplane has a high L/D ratio if it produces a large amount of lift or a small amount of drag. The lift/drag ratio is determined by dividing the lift coefficient by the drag coefficient, CL/CD.
The lift coefficient Cl is equal to the lift L divided by the (density r times half the velocity V squared times the wing area A). Cl = L / (A * .5 * r * V^2) The lift coefficient is also affected by the compressibility of the air, which is much greater at higher speeds, so velocity V is not a linear function. Compressibility is also affected by the shape of the aircraft surfaces.
The drag coefficient Cd is equal to the drag D divided by the (density r times half the velocity V squared times the reference area A). Cd = D / (A * .5 * r * V^2)
Lift-to-drag ratios for practical aircraft vary from about 4:1 for vehicles and birds with relatively short wings, up to 60:1 or more for vehicles with very long wings, such as gliders. A greater angle of attack relative to the forward movement also increases the extent of deflection, and thus generates extra lift. However a greater angle of attack also generates extra drag.
Lift/drag ratio also determines the glide ratio and gliding range. Since the glide ratio is based only on the relationship of the aerodynamics forces acting on the aircraft, aircraft weight will not affect it. The only effect weight has is to vary the time that the aircraft will glide for – a heavier aircraft gliding at a higher airspeed will arrive at the same touchdown point in a shorter time.
Buoyancyedit
Air pressure acting up against an object in air is greater than the pressure above pushing down. The buoyancy, in both cases, is equal to the weight of fluid displaced - Archimedes' principle holds for air just as it does for water.
A cubic meter of air at ordinary atmospheric pressure and room temperature has a mass of about 1.2 kilograms, so its weight is about 12 newtons. Therefore, any 1-cubic-meter object in air is buoyed up with a force of 12 newtons. If the mass of the 1-cubic-meter object is greater than 1.2 kilograms (so that its weight is greater than 12 newtons), it falls to the ground when released. If an object of this size has a mass less than 1.2 kilograms, it rises in the air. Any object that has a mass that is less than the mass of an equal volume of air will rise in air - in other words, any object less dense than air will rise.
Thrust to weight ratioedit
Thrust-to-weight ratio is, as its name suggests, the ratio of instantaneous thrust to weight (where weight means weight at the Earth's standard acceleration ). It is a dimensionless parameter characteristic of rockets and other jet engines and of vehicles propelled by such engines (typically space launch vehicles and jet aircraft).
If the thrust-to-weight ratio is greater than the local gravity strength (expressed in gs), then flight can occur without any forward motion or any aerodynamic lift being required.
If the thrust-to-weight ratio times the lift-to-drag ratio is greater than local gravity then takeoff using aerodynamic lift is possible.
Flight dynamicsedit
Flight dynamics is the science of air and space vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of mass, known as pitch, roll and yaw (See Tait-Bryan rotations for an explanation).
The control of these dimensions can involve a horizontal stabilizer (i.e. "a tail"), ailerons and other movable aerodynamic devices which control angular stability i.e. flight attitude (which in turn affects altitude, heading). Wings are often angled slightly upwards- they have "positive dihedral angle" which gives inherent roll stabilization.
Energy efficiencyedit
To create thrust so as to be able to gain height, and to push through the air to overcome the drag associated with lift all takes energy. Different objects and creatures capable of flight vary in the efficiency of their muscles, motors and how well this translates into forward thrust.
Propulsive efficiency determines how much energy vehicles generate from a unit of fuel.
Rangeedit
The range that powered flight articles can achieve is ultimately limited by their drag, as well as how much energy they can store on board and how efficiently they can turn that energy into propulsion.
For powered aircraft the useful energy is determined by their fuel fraction- what percentage of the takeoff weight is fuel, as well as the specific energy of the fuel used.
Power-to-weight ratioedit
All animals and devices capable of sustained flight need relatively high power-to-weight ratios to be able to generate enough lift and/or thrust to achieve take off.
Comments
Post a Comment